Skip to Content
Merck
  • Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model.

Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model.

International journal of nanomedicine (2015-01-28)
Feng-Yun J Huang, Te-Wei Lee, Chih-Hsien Chang, Liang-Cheng Chen, Wei-Hsin Hsu, Chien-Wen Chang, Jem-Mau Lo
ABSTRACT

In this study, the (188)Re-labeled PEGylated nanoliposome ((188)Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. The reporter cell line, F98(luc) was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of (188)Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered (188)Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the (188)Re-liposome-treated rats. By using bioluminescent imaging, the well-established reporter cell line (F98(luc)) showed a high relationship between cell number and its bioluminescent intensity (R(2)=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of (188)Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the (188)Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with (188)Re-liposome was prolonged 10.67% compared to the control group. The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting (188)Re-liposome via systemic administration can significantly prolong the lifespan of orthotopic glioma-bearing rats while maintaining reasonable systemic radiation safety. Therefore, (188)Re-liposome could be a potential therapeutic agent for glioblastoma multiforme treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cholesterol, tested according to Ph. Eur.
Sigma-Aldrich
Cholesterol, from lanolin, ≥99.0% (GC)
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
N,N-Diethylethylenediamine, ≥99%
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
D-Luciferin, synthetic, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
D-Luciferin, synthetic
SAFC
Cholesterol, Plant-Derived, SyntheChol®
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material
Lysine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Metoclopramide impurity E, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%