Skip to Content
Merck
  • Matrix-assisted laser desorption/ionization mass spectrometry of discrete mass poly(butylene glutarate) oligomers.

Matrix-assisted laser desorption/ionization mass spectrometry of discrete mass poly(butylene glutarate) oligomers.

Analytical chemistry (2003-09-11)
John B Williams, Toby M Chapman, David M Hercules
ABSTRACT

The mass dependency of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) response has been studied using equimolar mixtures of synthetic discrete mass poly(butylene glutarate) (PBG) oligomers of known structure having degrees of polymerization of 8, 16, 32, and 64. Mass discrimination observed was attributed to choice of matrix and detector saturation caused by higher laser intensity and inclusion of matrix ions in the MALDI spectra. Optimization of sample preparation and instrumental parameters provided uniform response over the mass ranged spanned by these four oligomers. The oligomer mixture was shown to serve as a model of more complex polymer distributions in the mass range 780-6000 Da, and application of the discrete mass oligomers as internal and calibration standards was demonstrated. Inclusion of PBG discrete mass oligomers as an internal standard in a quasi-equimolar mixture with polydispersed poly(butylene adipate) (PBA) indicated that some diminution of response occurred during the analysis of this mixture of materials. Reasons for differences in the corrected molecular weight averages of the polydispersed PBA obtained from measurements using MALDI and GPC were studied using individual discrete mass oligomers as calibration standards for GPC. The data indicated that differences in hydrodynamic volumes of PBG oligomers and PEG standards at similar masses resulted in an overestimation by GPC of the molecular weight averages of the PBA distribution.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Polybutenes, average Mn ~2,300 by VPO, isobutylene >90 %
Sigma-Aldrich
Polybutenes, average Mn ~920 by VPO, isobutylene >90 %