콘텐츠로 건너뛰기
Merck
  • Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer.

Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer.

Experimental cell research (2015-07-26)
Yijing Chu, Huijuan Tang, Yan Guo, Jing Guo, Bangxing Huang, Fang Fang, Jing Cai, Zehua Wang
초록

Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
5-Carboxy-fluorescein diacetate N-succinimidyl ester, for fluorescence, ≥95.0% (HPLC)
Sigma-Aldrich
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
MMP-2 human, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Sigma-Aldrich
Matrix Metalloproteinase-2 human, >90% (SDS-PAGE), recombinant, expressed in NSO cells, lyophilized powder
Sigma-Aldrich
SB−3CT, ≥98% (HPLC), powder
Sigma-Aldrich
MISSION® esiRNA, targeting human MMP2
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Mmp2