콘텐츠로 건너뛰기
Merck
  • Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.

Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.

Physical chemistry chemical physics : PCCP (2015-04-11)
Devaraj Ramasamy, Narendar Nasani, Ana D Brandão, Domingo Pérez Coll, Duncan P Fagg
초록

The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+δ electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ≪ Gd < no buffer layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Praseodymium(III) nitrate hexahydrate, 99.9% trace metals basis
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Neodymium, powder, −40 mesh, ≥99% trace rare earth metals basis
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethanol, absolute, denaturated with 0.5-1.5 Vol.% 2-butanone and approx. 0.001% Bitrex (GC), ≥98% (GC)
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Neodymium, rod, 50mm, diameter 6.35mm, cast, 99%
Neodymium, rod, 100mm, diameter 12.5mm, cast, 99%
Neodymium, rod, 100mm, diameter 6.35mm, cast, 99%
Neodymium, rod, 50mm, diameter 12.5mm, cast, 99%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Cerium(III) nitrate hexahydrate, 99% trace metals basis
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
USP
Citric acid, United States Pharmacopeia (USP) Reference Standard
Supelco
Citric acid, Anhydrous, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Citric acid, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Nickel(II) nitrate hexahydrate, puriss. p.a., ≥98.5% (KT)
Sigma-Aldrich
Nickel(II) nitrate hexahydrate, purum p.a., crystallized, ≥97.0% (KT)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Nickel(II) nitrate hexahydrate, crystals
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Citric acid, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Citric acid, anhydrous, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications