콘텐츠로 건너뛰기
Merck
  • Beta2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells.

Beta2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells.

Journal of cell science (2005-12-15)
María Siliceo, David García-Bernal, Silvia Carrasco, Ernesto Díaz-Flores, Federico Coluccio Leskow, Federico C Leskow, Joaquín Teixidó, Marcelo G Kazanietz, Isabel Mérida
초록

The small GTPase Rac contributes to regulation of cytoskeletal rearrangement during chemokine-induced lymphocyte adhesion and migration in a multi-step process that is very precisely coordinated. Chimaerins are Rac1-specific GTPase-activating proteins of unknown biological function, which have a canonical diacylglycerol C1-binding domain. Here we demonstrate endogenous expression of beta2-chimaerin in T lymphocytes and study the functional role of this protein in phorbol ester and chemokine (CXCL12)-regulated T-cell responses. We used green fluorescent protein-tagged beta2-chimaerin and phorbol ester stimulation to investigate changes in protein localization in living lymphocytes. Our results demonstrate that active Rac cooperates with C1-dependent phorbol ester binding to induce sustained GFP-beta2-chimaerin localization to the membrane. Subcellular distribution of GFP beta2-chimaerin in living cells showed no major changes following CXCL12 stimulation. Nonetheless Rac1-GTP levels were severely inhibited in GFP-beta2-chimaerin-expressing cells, which displayed reduced CXCL12-induced integrin-dependent adhesion and spreading. This effect was dependent on chimaerin GTPase-activating protein function and required diacylglycerol generation. Whereas beta2-chimaerin overexpression decreased static adhesion, it enhanced CXCL12-dependent migration via receptor-dependent diacylglycerol production. These studies demonstrate that beta2-chimaerin provides a novel, diacylglycerol-dependent mechanism for Rac regulation in T cells and suggest a functional role for this protein in Rac-mediated cytoskeletal remodeling.