콘텐츠로 건너뛰기
Merck
  • The near future: improving the activity of rifamycins and pyrazinamide.

The near future: improving the activity of rifamycins and pyrazinamide.

Tuberculosis (Edinburgh, Scotland) (2010-04-13)
D A Mitchison, P B Fourie
초록

While we wait for improved new anti-tuberculosis drugs, the main aim for improving current treatment should be to optimize the use of the two current drugs, rifampicin and the pro-drug pyrazinamide, which are responsible to a similar extent for the entire sterilizing activity of current therapy. The rifamycin activity could be improved by increasing the dose size of rifampicin or by daily dosing with long acting rifapentine. Increasing the dose size of pyrazinamide is limited by toxicity but an alternative approach is to use inhalation with pyrazinoic acid, as an adjunct to standard oral therapy. This would acidify pulmonary lesions, thus increasing the bactericidal activity of the orally administered pyrazinamide. Because pyrazinoic acid is the active moiety, it should also increase overall pyrazinamide activity and, because most resistance arises in the pncA gene that converts pyrazinamide to pyrazinoic acid, it should act on most pyrazinamide resistant strains. Inhalation technology allows delivery of drug to lesions rapidly and without first pass toxicity. The properties of drug containing microparticles and nanoparticles during inhalation and storage are reviewed. Spray-dried larger Trojan particles in which the smaller encapsulated particles can reside should be able to improve localisation within alveoli and avoid some storage problems.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Pyrazinecarboxamide
Pyrazinamide, European Pharmacopoeia (EP) Reference Standard