콘텐츠로 건너뛰기
Merck
  • Enhanced chemical oxidation of aromatic hydrocarbons in soil systems.

Enhanced chemical oxidation of aromatic hydrocarbons in soil systems.

Chemosphere (2005-11-01)
Namgoo Kang, Inez Hua
초록

Fenton's destruction of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated in soil slurry batch reactors. The purpose of the investigation was to quantify the enhancement of oxidation rates and efficiency by varying process conditions such as iron catalyst (Fe(II) or Fe(III); 2, 5, and 10mM), hydrogen peroxide (H2O2; 30, 150, 300 mM), and metal chelating agents (l-ascorbic acid, gallic acid, or N-(2-hydroxyethyl)iminodiacetic acid). Rapid contaminant mass destruction (97% after 3h) occurred in the presence of 300 mM H2O2 and 10 mM Fe(III). An enhanced removal rate (>90% removal after 15 min and 95% removal after 3h) was also observed by combining Fe(III), N-(2-hydroxyethyl)iminodiacetic acid and 300 mM H2O2. The observed BTEX mass removal rate constants (3.6-7.8 x 10(-4)s(-1)) were compared to the estimated rate constants (4.1-10.1 x 10(-3)s(-1)). The influence of non-specific oxidants loss (by reaction with iron hydroxides and soil organic matter) was also explored.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
N-(2-Hydroxyethyl)iminodiacetic acid, ≥95% (titration)
Sigma-Aldrich
N-(2-Hydroxyethyl)iminodiacetic acid, ≥98.0% (T)