콘텐츠로 건너뛰기
Merck

The entropies of adsorbed molecules.

Journal of the American Chemical Society (2012-10-05)
Charles T Campbell, Jason R V Sellers
초록

Adsorbed molecules are involved in many reactions on solid surface that are of great technological importance. As such, there has been tremendous effort worldwide to learn how to predict reaction rates and equilibrium constants for reactions involving adsorbed molecules. Theoretical calculation of both the rate and equilibrium constants for such reactions requires knowing the entropy and enthalpy of the adsorbed molecule. While much effort has been devoted to measuring and calculating the enthalpies of well-defined adsorbates, few measurements of the entropies of adsorbates have been reported. We present here a new way to determine the standard entropies of adsorbed molecules (S(ad)(0)) on single crystal surfaces from temperature programmed desorption data, prove its accuracy by comparison to entropies measured by equilibrium methods, and apply it to published data to extract new entropies. Most importantly, when combined with reported entropies, we find that at high coverage, they linearly track the entropy of the gas-phase molecule at the same temperature (T), such that S(ad)(0)(T) = 0.70 S(gas)(0)(T) - 3.3R (R = the gas constant), with a standard deviation of only 2R over a range of 50R. These entropies, which are ~2/3 of the gas, are huge compared to most theoretical predictions. This result can be extended to reliably predict prefactors in the Arrhenius rate constant for surface reactions involving such species, as proven here for desorption.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Magnesium oxide, 99.99% trace metals basis
Sigma-Aldrich
Magnesium oxide, nanopowder, ≤50 nm particle size (BET)
Sigma-Aldrich
Magnesium oxide, ≥99.99% trace metals basis
Sigma-Aldrich
Magnesium oxide, BioUltra, ≥97.0% (calcined substance, KT)
Sigma-Aldrich
Magnesium oxide, (single crystal substrate), ≥99.9% trace metals basis, <100>, L × W × thickness 10 mm × 10 mm × 0.5 mm
Sigma-Aldrich
Magnesium oxide, tested according to Ph. Eur., heavy
Sigma-Aldrich
Magnesium oxide, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E 530, light, 98.0-100.5% (calc. for dried substance)
Sigma-Aldrich
Magnesium oxide, light, 95%
Sigma-Aldrich
Magnesium oxide, ACS reagent, 97%
Sigma-Aldrich
Magnesium oxide, -10-+50 mesh, 98%
Sigma-Aldrich
Magnesium oxide, ≥99% trace metals basis, -325 mesh