콘텐츠로 건너뛰기
Merck
  • Glycine-extended adrenomedullin exerts vasodilator effect through amidation in the rat aorta.

Glycine-extended adrenomedullin exerts vasodilator effect through amidation in the rat aorta.

Regulatory peptides (2003-04-11)
Yuan-Ning Cao, Kazuo Kitamura, Kaoru Ito, Johji Kato, Seiichi Hashida, Kazuhiro Morishita, Tanenao Eto
초록

Human adrenomedullin (hAM) is an endogenous peptide that has potent vasodilator activity. Mature AM is biosynthesized from its intermediate form, glycine-extended AM (AM-gly), by carboxy-terminal amidation. AM-gly is generally considered to be biologically inactive but is a major molecular form in human and rat plasma. The present study demonstrated that recombinant human AM-gly (hAM-gly) elicits potent vasodilator effect on isolated rat aorta. In aortic rings, hAM-gly produced dose-dependent (0.1-100 nM) relaxation in phenylephrine-precontracted strips (pD(2) 8.4+/-0.5). The vasorelaxant potency of hAM-gly was comparable to that of hAM (pD(2) 8.6+/-0.2) but hAM-gly took a significantly (P<0.01) longer time to reach the maximal relaxation compared with hAM (T(max) 23+/-4 vs. 5+/-2 min). Vasorelaxant responses to hAM-gly were abolished by endothelial removal. N(omega)-nitro-L-arginine (L-NNA) and AM(22-52) significantly (P<0.01) reduced the vasodilator effect of hAM-gly. Furthermore, 4-phenyl-3-butenoic acid (PBA), an alpha-amidation enzyme inhibitor, significantly (P<0.05) inhibited the vasorelaxant responses to hAM-gly without any effect on the hAM-induced relaxation, suggesting the possible process of amidation in the rat aorta. We further clarified that the aorta has the ability to convert exogenous hAM-gly to mature hAM and the conversion is inhibited by PBA. These results suggest that the circulating AM-gly may play a role in regulating vascular tone and increased plasma AM-gly may be involved in the pathophysiology of cardiovascular diseases.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
trans-Styrylacetic acid, 96%