콘텐츠로 건너뛰기
Merck
  • Natural abundance nitrogen-15 nuclear magnetic resonance spectral studies on selected donors.

Natural abundance nitrogen-15 nuclear magnetic resonance spectral studies on selected donors.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2002-10-25)
N Someswara Rao, G Babu Rao, B N Murthy, M Maria Das, T Prabhakar, M Lalitha
초록

The natural abundance 15N-NMR chemical shifts of selected aliphatic amines, 2-substituted pyridine type compounds, bialicyclic tertiary amines have been measured as a function of the nature of the solvent. In the case of cyclic aliphatic amines, like piperidine, morpholine, piperazine, thiomorpholine, the nitrogen is more shielded in concentrated solution compared to that in dilute solution whereas in the hydrogen bonding and protonating solvents there is a prominent deshielding. 2-Substituted pyridines studied can be further divided into four sub groups. The site of hydrogen bonding and protonation in 2-amino, 2-hydroxy and 2-mercapto pyridines have been conclusively proved from the 15N-NMR chemical shifts and the well-known tautomeric forms of the above compounds. Similarly in the case of 2-(2-thienyl)pyridine and 2-(3-thienyl)pyridine, the site of donation has been proved as the nitrogen of the pyridine ring in both the compounds. In a similar manner, the site of hydrogen bonding and protonation in two individual compounds 2-anilinopyridine and 2-(2-pyridyl)benzimidazole have also been established. Among the bialicyclic amines, 1,2-diazabicyclo[2.2.2]octane (DABCO) behaved differently from the other two compounds. In both 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), it was possible to show that N1-nitrogen in both the compounds is the site of donation. The effect of the second donor site on the 15N-NMR chemical shift, the site of donation in the selected compounds and some typical compounds reported in literature have been presented and discussed.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Thiomorpholine, 98%