- Conformational cycling in beta-phosphoglucomutase catalysis: reorientation of the beta-D-glucose 1,6-(Bis)phosphate intermediate.
Conformational cycling in beta-phosphoglucomutase catalysis: reorientation of the beta-D-glucose 1,6-(Bis)phosphate intermediate.
Activated Lactococcus lactis beta-phosphoglucomutase (betaPGM) catalyzes the conversion of beta-d-glucose 1-phosphate (betaG1P) derived from maltose to beta-d-glucose 6-phosphate (G6P). Activation requires Mg(2+) binding and phosphorylation of the active site residue Asp8. Initial velocity techniques were used to define the steady-state kinetic constants k(cat) = 177 +/- 9 s(-)(1), K(m) = 49 +/- 4 microM for the substrate betaG1P and K(m) = 6.5 +/- 0.7 microM for the activator beta-d-glucose 1,6-bisphosphate (betaG1,6bisP). The observed transient accumulation of [(14)C]betaG1,6bisP (12% at approximately 0.1 s) in the single turnover reaction carried out with excess betaPGM (40 microM) and limiting [(14)C]betaG1P (5 microM) and betaG1,6bisP (5 microM) supported the role of betaG1,6bisP as a reaction intermediate in the conversion of the betaG1P to G6P. Single turnover reactions of [(14)C]betaG1,6bisP with excess betaPGM were carried out to demonstrate that phosphoryl transfer rather than ligand binding is rate-limiting and to show that the betaG1,6bisP binds to the active site in two different orientations (one positioning the C(1)phosphoryl group for reaction with Asp8, and the other orientation positioning the C(6)phosphoryl group for reaction with Asp8) with roughly the same efficiency. Single turnover reactions carried out with betaPGM, [(14)C]betaG1P, and unlabeled betaG1,6bisP demonstrated complete exchange of label to the betaG1,6bisP during the catalytic cycle. Thus, the reorientation of the betaG1,6bisP intermediate that is required to complete the catalytic cycle occurs by diffusion into solvent followed by binding in the opposite orientation. Published X-ray structures of betaG1P suggest that the reorientation and phosphoryl transfer from betaG1,6bisP occur by conformational cycling of the enzyme between the active site open and closed forms via cap domain movement. Last, the equilibrium ratio of betaG1,6bisP to betaG1P plus G6P was examined to evidence a significant stabilization of betaPGM aspartyl phosphate.