콘텐츠로 건너뛰기
Merck
  • Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress.

Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress.

BMC microbiology (2009-09-01)
Cindy Loui, Alexander C Chang, Sangwei Lu
초록

The global regulatory system ArcAB controls the anaerobic growth of E. coli, however, its role in aerobic conditions is not well characterized. We have previously reported that ArcA was necessary for Salmonella to resist reactive oxygen species (ROS) in aerobic conditions. To investigate the mechanism of ROS resistance mediated by ArcAB, we generated deletion mutants of ArcA and ArcB in E. coli. Our results demonstrated that both ArcA and ArcB were necessary for resistance to hydrogen peroxide (H2O2), a type of ROS, and their function in this resistance was independent from H2O2 scavenge. Mutagenesis analysis of ArcA indicated that ROS resistance was mediated through a distinct signaling pathway from that used in anaerobic conditions. An abundant protein flagellin was elevated at both the protein and mRNA levels in the DeltaarcA mutant as compared to the wild type E. coli, and deletion of flagellin restored the resistance of the DeltaarcA mutant to H2O2. The resistance of the DeltaarcA mutant E. coli to H2O2 can also be restored by amino acid supplementation, suggesting that a deficiency in amino acid and/or protein synthesis in the mutant contributed to its susceptibility to H2O2, which is consistent with the notion that protein synthesis is necessary for ROS resistance. Our results suggest that in addition to its role as a global regulator for anaerobic growth of bacteria, ArcAB system is also important for bacterial resistance to ROS in aerobic conditions, possibly through its influence on bacterial metabolism, especially amino acid and/or protein assimilation and synthesis.

MATERIALS
제품 번호
브랜드
제품 설명

Supelco
ProteoMass Peptide MALDI-MS Calibration Kit, Peptide MALDI MS Calibration Standard