콘텐츠로 건너뛰기
Merck
  • The Development and Use of Scalable Systems for Studying Aberrant Splicing in SF3B1-Mutant CLL.

The Development and Use of Scalable Systems for Studying Aberrant Splicing in SF3B1-Mutant CLL.

Methods in molecular biology (Clifton, N.J.) (2018-10-24)
Tushar Murthy, Kiran V Paul, Alexander C Minella, Manoj M Pillai
초록

Mutational landscape of CLL is now known to include recurrent non-synonymous mutations in SF3B1, a core splicing factor. About 5-10% of newly diagnosed CLL harbor these mutations which are typically limited to HEAT domains in the carboxyl-terminus of the protein. Importantly, the mutations are not specific to CLL but also present in several unrelated clonal disorders. Analysis of patient samples and cell lines has shown the primary splicing aberration in SF3B1-mutant cells to the use of novel or "cryptic" 3' splice sites (3SS). Advances in genome-editing and next-generation sequencing (NGS) have allowed development of isogenic models and detailed analysis of changes to the transcriptome with relative ease. In this manuscript, we focus on two relevant methods to study splicing factor mutations in CLL: development of isogenic scalable cell lines and informatics analysis of RNA-Seq datasets.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Gelatin from porcine skin, Type A, lyophilized powder, γ-irradiated, BioXtra, suitable for cell culture