콘텐츠로 건너뛰기
Merck
  • Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state.

Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state.

Journal of bacteriology (2006-01-24)
John M Pfeffer, Hendrik Strating, Joel T Weadge, Anthony J Clarke
초록

The O acetylation of peptidoglycan occurs specifically at the C-6 hydroxyl group of muramoyl residues. Using a combination of high-performance liquid chromatography-based organic acid analysis and carbohydrate analysis by high-pH anion-exchange chromatography, we determined that strains of Entercoccus durans, E. faecalis, E. faecium, and E. hirae produce O-acetylated peptidoglycan. The levels of O acetylation ranged from 19% to 72% relative to the muramic acid content, and they were found to vary with the growth phase of the culture. Increases of 10 to 40% in O acetylation were observed with cultures entering the stationary phase. Cells of E. faecalis in the viable but nonculturable (VBNC) state had the highest levels of peptidoglycan O acetylation. The presence of this modification to peptidoglycan was shown to inhibit the action of hen egg white lysozyme in a concentration-dependent manner. Zymography using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels containing either O-acetylated or chemically de-O-acetylated peptidoglycan was used to monitor the production of specific autolysins in E. faecalis. Differences in the expression of specific autolysins were observed with the age of the culture, and VBNC E. faecalis produced the highest levels of these enzymes. This technique also permitted classification of the enterococcal autolysins into enzymes that preferentially hydrolyze either O-acetylated or non-O-acetylated peptidoglycan and enzymes that show no apparent preference for either substrate type.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Mutanolysin from Streptomyces globisporus ATCC 21553, 0.2 μm filtered, lyophilized powder, ≥4000 units/mg protein (biuret)