콘텐츠로 건너뛰기
Merck
  • Dynamic testicular adhesion junctions are immunologically unique. II. Localization of classic cadherins in rat testis.

Dynamic testicular adhesion junctions are immunologically unique. II. Localization of classic cadherins in rat testis.

Biology of reproduction (2002-03-22)
Kamin J Johnson, Kim Boekelheide
초록

In the seminiferous epithelium, morphologically diverse junctions mediate inter-Sertoli and Sertoli-germ cell adhesive contact and likely transmit signals between contacting cells. Defining the molecular composition of testicular cell-cell junctions is an important step in determining their function. Proteins belonging to the cadherin superfamily are important mediators of cell-cell adhesion, as well as cell signaling. Here, we determined the spatial and temporal protein expression of four classic cadherins in rat testis: N-cadherin, cadherin-6, cadherin-11, and a cadherin defined by an antiserum generated against a conserved classic cadherin peptide (L4). Through Western blot analysis, all antibodies recognized unique proteins. Similarly, each cadherin displayed unique, cell-type specific immunostaining patterns. Whereas N-cadherin, cadherin-11, and L4-positive cadherin were expressed from Postnatal Day 7 through adulthood, cadherin-6 protein was not present at Postnatal Day 7 and first appeared at Day 21. Immunostaining of testis cryosections on Postnatal Days 7, 21, 31, 43, and those of adults indicated that cadherin-11 localized to peritubular cell junctions. N-cadherin immunostaining localized to basal inter-Sertoli junctions, Sertoli-spermatocyte junctions, and at about stages I-VII in Sertoli-elongate spermatid junctions. Cadherin-6 immunostaining was restricted to Sertoli-round spermatid and in Sertoli-elongate spermatid junctions at approximately stages XII-I. Finally, L4-positive immunostaining also detected Sertoli-round spermatid junctions in addition to Sertoli-elongate spermatid junctions at approximately stages XII-I. These data show that the various testicular cell-cell junctions are molecularly unique and dynamic complexes.