์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
Merck

Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage.

Cell (2019-04-09)
Stefan Uderhardt, Andrew J Martins, John S Tsang, Tim Lรคmmermann, Ronald N Germain
์ดˆ๋ก

Neutrophils are attracted to and generate dense swarms at sites of cell damage in diverse tissues, often extending the local disruption of organ architecture produced by the initial insult. Whether the inflammatory damage resulting from such neutrophil accumulation is an inescapable consequence of parenchymal cell death has not been explored. Using a combination of dynamic intravital imaging and confocal multiplex microscopy, we report here that tissue-resident macrophages rapidly sense the death of individual cells and extend membrane processes that sequester the damage, a process that prevents initiation of the feedforward chemoattractant signaling cascade that results in neutrophil swarms. Through this "cloaking" mechanism, the resident macrophages prevent neutrophil-mediated inflammatory damage, maintaining tissue homeostasis in the face of local cell injury that occurs on a regular basis in many organs because of mechanical and other stresses. VIDEO ABSTRACT.

MATERIALS
์ œํ’ˆ ๋ฒˆํ˜ธ
๋ธŒ๋žœ๋“œ
์ œํ’ˆ ์„ค๋ช…

Sigma-Aldrich
PSB-12062, ≥98% (HPLC)
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Histodenzโ„ข, nonionic density gradient medium