콘텐츠로 건너뛰기
Merck

JNK signalling regulates antioxidant responses in neurons.

Redox biology (2020-09-20)
Chris Ugbode, Nathan Garnham, Laura Fort-Aznar, Gareth J O Evans, Sangeeta Chawla, Sean T Sweeney
초록

Reactive oxygen species (ROS) are generated during physiological bouts of synaptic activity and as a consequence of pathological conditions in the central nervous system. How neurons respond to and distinguish between ROS in these different contexts is currently unknown. In Drosophila mutants with enhanced JNK activity, lower levels of ROS are observed and these animals are resistant to both changes in ROS and changes in synapse morphology induced by oxidative stress. In wild type flies, disrupting JNK-AP-1 signalling perturbs redox homeostasis suggesting JNK activity positively regulates neuronal antioxidant defense. We validated this hypothesis in mammalian neurons, finding that JNK activity regulates the expression of the antioxidant gene Srxn-1, in a c-Jun dependent manner. We describe a conserved 'adaptive' role for neuronal JNK in the maintenance of redox homeostasis that is relevant to several neurodegenerative diseases.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Corning® Costar® Spin-X® centrifuge tube filters, cellulose acetate membrane, pore size 0.45 μm, non-sterile
Sigma-Aldrich
Glutathione Assay Kit, sufficient for 700 assays