콘텐츠로 건너뛰기
Merck
  • MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach.

MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach.

PloS one (2015-10-21)
Kalyan C Tirupula, Dongmei Zhang, Appledene Osbourne, Arunachal Chatterjee, Russ Desnoyer, Belinda Willard, Sadashiva S Karnik
초록

Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A 'cardiac-specific finger print' of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a 'MAS-signalosome' model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of 'signalosome' components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse