콘텐츠로 건너뛰기
Merck
  • Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process.

Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process.

Chemosphere (2019-07-06)
Huijiao Wang, Majid Mustafa, Gang Yu, Marcus Östman, Yi Cheng, Yujue Wang, Mats Tysklind
초록

This study investigated the abatement of a number of antimicrobials frequently detected in municipal wastewater by conventional ozonation and a recently developed ozone-based advanced oxidation process, the electro-peroxone (E-peroxone) process. A synthetic water and a real secondary wastewater effluent were spiked with fourteen antimicrobials, including antibiotics and biocides, and then treated by the two processes. The results show that most of the antibiotics investigated (e.g., ofloxacin, trimethoprim, norfloxacin, and ciprofloxacin) readily react with ozone (O3) and could therefore be efficiently eliminated from the water matrices by direct O3 oxidation during both processes. In contrast, most of the biocides tested in this study (e.g., clotrimazole, pentamidine, bixafen, propiconazole, and fluconazole) were only moderately reactive, or non-reactive, with O3. Therefore, these biocides were removed at considerably lower rate than the antibiotics during the two ozone-based processes, with hydroxyl radical (OH) oxidation playing an important role in their abatement mechanisms. When compared with conventional ozonation, the E-peroxone process is defined by the in situ electrogeneration of hydrogen peroxide, which considerably enhances the transformation of O3 to OH. As a result, the E-peroxone process significantly accelerated the abatement of biocides and required a considerably shorter treatment time to eliminate all of the tested compounds from the water matrices than conventional ozonation. In addition, the E-peroxone process enhanced the contributions of OH fractions to the abatement of moderately ozone reactive benzotriazoles. These results demonstrate that the E-peroxone process holds promise as an effective tertiary treatment option for enhancing the abatement of ozone-resistant antimicrobials in wastewater.

MATERIALS
제품 번호
브랜드
제품 설명

Supelco
Trimethoprim-d9, VETRANAL®, analytical standard