콘텐츠로 건너뛰기
Merck
  • Multiple antibodies to titin immunoreact with AHNAK and localize to the mitotic spindle machinery.

Multiple antibodies to titin immunoreact with AHNAK and localize to the mitotic spindle machinery.

Cell motility and the cytoskeleton (2001-12-18)
R P Wernyj, C M Ewing, W B Isaacs
초록

Recently, the large filamentous striated-muscle protein titin has been observed in non-muscle cells, and, in one instance, has been proposed to have a nuclear function as a chromosomal component contributing to structure and elasticity. In this study, we sought to further characterize the presumptive nuclear isoform of titin. Immunofluorescence microscopy with multiple titin-specific monoclonal antibodies shows localization to the nucleus in interphase cells and to the spindle machinery in mitotic cells in all cell types examined; localization to condensed chromosomes is not observed. An abundant 700-kDa phosphoprotein is the predominant species immunoprecipitated with these antibodies. Sequencing of peptide fragments of the immunopurified protein reveals identity to AHNAK, a nuclear phosphoprotein, an identification that was confirmed by Western blot analysis with antibodies to AHNAK and peptide fragmentation patterns. Sequence comparison suggests similarities between the repetitive heptad phi+/-phiP+/-phi+/- motif in AHNAK and the PEVK region of titin, potentially explaining the cross-reactivity observed between AHNAK antibodies and titin antibodies. Interestingly, although some AHNAK antibodies stain interphase nuclei, no evidence of mitotic spindle localization is seen, suggesting that the identity of the protein at the latter location is more closely related to titin than AHNAK. This concept is further supported by observations that cell lines not expressing AHNAK have similar antititin antibody localization to the mitotic spindle. We conclude that (1) multiple titin antibodies, particularly those recognizing the PEVK region, cross-react with AHNAK, and (2) the mitotic spindle staining observed with antititin antibodies is most likely due to the association of titin or a titin-like molecule with this structure.