콘텐츠로 건너뛰기
Merck
  • Crosstalk between CLCb/Dyn1-Mediated Adaptive Clathrin-Mediated Endocytosis and Epidermal Growth Factor Receptor Signaling Increases Metastasis.

Crosstalk between CLCb/Dyn1-Mediated Adaptive Clathrin-Mediated Endocytosis and Epidermal Growth Factor Receptor Signaling Increases Metastasis.

Developmental cell (2017-02-09)
Ping-Hung Chen, Nawal Bendris, Yi-Jing Hsiao, Carlos R Reis, Marcel Mettlen, Hsuan-Yu Chen, Sung-Liang Yu, Sandra L Schmid
초록

Signaling receptors are internalized and regulated by clathrin-mediated endocytosis (CME). Two clathrin light chain isoforms, CLCa and CLCb, are integral components of the endocytic machinery whose differential functions remain unknown. We report that CLCb is specifically upregulated in non-small-cell lung cancer (NSCLC) cells and is associated with poor patient prognosis. Engineered single CLCb-expressing NSCLC cells, as well as "switched" cells that predominantly express CLCb, exhibit increased rates of CME and altered clathrin-coated pit dynamics. This "adaptive CME" resulted from upregulation of dynamin-1 (Dyn1) and its activation through a positive feedback loop involving enhanced epidermal growth factor (EGF)-dependent Akt/GSK3β phosphorylation. CLCb/Dyn1-dependent adaptive CME selectively altered EGF receptor trafficking, enhanced cell migration in vitro, and increased the metastatic efficiency of NSCLC cells in vivo. We define molecular mechanisms for adaptive CME in cancer cells and a role for the reciprocal crosstalk between signaling and CME in cancer progression.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-CLTA antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-β-Actin antibody, Mouse monoclonal, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone hVIN-1, ascites fluid