- Cathepsin L deficiency results in reactive oxygen species (ROS) accumulation and vascular cells activation.
Cathepsin L deficiency results in reactive oxygen species (ROS) accumulation and vascular cells activation.
Recent evidence suggests a link between cathepsin L (CTSL) and vascular diseases. However, its contribution to reactive oxygen species (ROS) homeostasis in the vasculature remains unknown. p66shc is a redox enzyme implicated in mitochondrial ROS generation and translation of oxidative signals. In this study, we explored the relationship between CTSL and oxidative damage in vasculature and whether the oxidative damage is mediated by p66shc.Carotid arteries from aged mice (24 months old) showed a reduction in CTSL expression compared with young wild-type mice (4 months old). Local knockdown of CTSL in carotid arteries of young mice by adenoviral vector encoding the short hairpin RNA targeting CTSL leading to premature vascular aging, as shown by mitochondrial disruption, increased β-galactosidase-positive cells, reduced telomerase activity, and up-regulation of p66shc. Knockdown of CTSL decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, III, and IV, leading to increased mitochondrial ROS and hyperpolarization of the mitochondrial membrane in vitro. Furthermore, knockdown of CTSL also stimulated ROS production and senescence in vascular cells, accompanied by the up-regulation of p66shc.However, p66shc knockdown blunted the alteration in ROS production, and senescence in CTSL knockdown vascular cells. This study suggests that CTSL knockdown partially induces vascular cells damage via increased ROS production and up-regulation of p66shc.