Skip to Content
Merck
  • High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1.

High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1.

American journal of physiology. Renal physiology (2013-05-31)
Xiaoming Zhou, Hong Wang, Maurice B Burg, Joan D Ferraris
ABSTRACT

Activation of the transcription factor NFAT5 by high NaCl involves changes in phosphorylation. By siRNA screening, we previously found that protein targeting to glycogen (PTG), a regulatory subunit of protein phosphatase1 (PP1), contributes to regulation of high NaCl-induced NFAT5 transcriptional activity. The present study addresses the mechanism involved. We find that high NaCl-induced inhibition of PTG elevates NFAT5 activity by increasing NFAT5 transactivating activity, protein abundance, and nuclear localization. PTG acts via a catalytic subunit PP1γ. PTG associates physically with PP1γ, and NaCl reduces both this association and remaining PTG-associated PP1γ activity. High NaCl-induced phosphorylation of p38, ERK, and SHP-1 contributes to activation of NFAT5. Knockdown of PTG does not affect phosphorylation of p38 or ERK. However, PTG and PP1γ bind to SHP-1, and knockdown of either PTG or PP1γ increases high NaCl-induced phosphorylation of SHP-1-S591, which inhibits SHP-1. Mutation of SHP-1-S591 to alanine, which cannot be phosphorylated, increases inhibition of NFAT5 by SHP-1. Thus high NaCl reduces the stimulatory effect of PTG and PP1γ on SHP-1, which in turn reduces the inhibitory effect of SHP-1 on NFAT5. Our findings add to the known functions of PTG, which was previously recognized only for its glycogenic activity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-PP1γ1 Antibody, Upstate®, from rabbit
Sigma-Aldrich
Monoclonal Anti-β-Tubulin III antibody produced in mouse, clone SDL.3D10, ascites fluid