Skip to Content
Merck
  • Fast detection of alpha-fetoprotein-L3 using lens culinaris agglutinin immobilized gold nanoparticles.

Fast detection of alpha-fetoprotein-L3 using lens culinaris agglutinin immobilized gold nanoparticles.

Journal of nanoscience and nanotechnology (2014-04-18)
Ying Sun, Liubin Qin, Dejun Liu, Changhong Liu, Yongwei Sun, Yourong Duan
ABSTRACT

Colloidal gold is extensively used for molecular sensing because that the surface plasmon resonance (SPR) bands are affected by changes in the dielectric properties in the close vicinity of these structures due to the binding of ligands to the corresponding receptor molecules immobilized onto the nanostructures through chemi- or physisorption. We describe a simple method for the detection of Alpha-Fetoprotein-L3 which is a new generation of tumor marker for hepatocellular carcinoma (HCC) based on the aggregation of Lens culinaris agglutinin (LCA) Immobilized Gold Nanoparticles. The LCA conjugated GNPs obtained were 15-20 nm in diameter. The visible color change of the gold nanoparticles from purple to blue on interaction with 100 ng/mL of AFP-L3 is the principle applied here for the sensing of AFP-L3 level. UV/Vis spectroscopy also allows assay monitoring by quantifying the red shift of the plasmon resonance wavelength. With this method, the protein AFP-L3 can be rapidly detected as demanded for clinical diagnosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gold, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.997% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, beads, 1-6 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, powder, <45 μm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, rod, diam. 3.0 mm, 99.99% trace metals basis
Gold, insulated wire, 0.5m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, insulated wire, 0.1m, conductor diameter 0.125mm, insulation thickness 0.016mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Sigma-Aldrich
Gold, wire, diam. 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.05 mm, 99.99% trace metals basis
Gold, microleaf disks, 10mm, thinness 0.5μm, specific density 966μg/cm2, removable support, 99.99+%
Gold, tube, 200mm, outside diameter 1.0mm, inside diameter 0.5mm, wall thickness 0.25mm, as drawn, 99.95%
Gold, rod, 50mm, diameter 3.0mm, as drawn, 99.95%
Gold, insulated wire, 1m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyester insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.01μm, specific density 20.7μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 1m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyimide insulation, 99.99%
Gold, tube, 100mm, outside diameter 10.0mm, inside diameter 9.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, rod, 10mm, diameter 6.0mm, as drawn, 99.95%
Gold, insulated wire, 2m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.05μm, specific density 101.3μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, rod, 100mm, diameter 2.0mm, as drawn, 99.95%
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, rod, 25mm, diameter 3.0mm, as drawn, 99.95%
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.8mm, wall thickness 0.1mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 3.0mm, inside diameter 2.8mm, wall thickness 0.10mm, as drawn, 99.95%