Skip to Content
Merck
  • Molecular analysis of somatic embryogenesis through proteomic approach and optimization of protocol in recalcitrant Musa spp.

Molecular analysis of somatic embryogenesis through proteomic approach and optimization of protocol in recalcitrant Musa spp.

Physiologia plantarum (2019-03-19)
Kumaravel Marimuthu, Uma Subbaraya, Backiyarani Suthanthiram, Saraswathi S Marimuthu
ABSTRACT

Somatic embryogenesis (SE) is a complex stress related process regulated by numerous biological factors. SE is mainly applicable to mass propagation and genetic improvement of plants through gene transfer technology and induced mutations. In banana, SE is highly genome dependent as the efficiency varies with cultivars. To understand the molecular mechanism of SE, a proteomics approach was carried out to identify proteins expressed during embryogenic calli (EC) induction, regeneration and germination of somatic embryos in the banana cultivar cv. Rasthali (AAB). In total, 70 spots were differentially expressed in various developmental stages of SE, of which 16 were uniquely expressed and 17 were highly abundant in EC compared to non-embryogenic calli and explants. Also, four spots were uniquely expressed in germinating somatic embryos. The functional annotation of identified proteins revealed that calcium signaling along with stress and endogenous hormones related proteins played a vital role in EC induction and germination of somatic embryos. Thus, based on this outcome, the callus induction media was modified and tested in five cultivars. Among them, cultivars Grand Naine (AAA), Monthan (ABB) and Ney Poovan (AB) showed a better response in tryptophan added media, whereas Red Banana (AAA) and Karpuravalli (ABB) showed maximum EC induction in kinetin and CaCl2 supplemented media respectively. Simultaneously, germination media were modified to induce proteins responsible for germination. In cv. Rasthali, media supplemented with 10 mM CaCl2 showed a maximum increase in germination (51.79%) over control plants. Thus, the present study revealed that media modification based on proteomic analysis can induce SE in recalcitrant cultivars and also enhance germination in cultivars amenable for SE.