コンテンツへスキップ
Merck
  • Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon.

Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon.

American journal of physiology. Gastrointestinal and liver physiology (2014-08-16)
Quan Findlay, Kiryu K Yap, Annette J Bergner, Heather M Young, Lincon A Stamp
要旨

Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D-(+)-グルコース, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-グルコース, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
L-グルタミン, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
デキストロース, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
L-グルタミン, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
D-(+)-グルコース, ≥99.5% (GC), BioXtra
Sigma-Aldrich
エチレンジアミン四酢酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
エチレンジアミン四酢酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
プトレシン 二塩酸塩, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
HEPES緩衝液, 1 M in H2O
Supelco
デキストロース, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
L-グルタミン
USP
デキストロース, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
プロゲステロン, powder, BioReagent, suitable for cell culture
SAFC
HEPES
Sigma-Aldrich
エチレンジアミン四酢酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
エチレンジアミン四酢酸, 99.995% trace metals basis
Sigma-Aldrich
D-(+)-グルコース, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)