コンテンツへスキップ
Merck

Organic molecules reconstruct nanostructures on ionic surfaces.

Small (Weinheim an der Bergstrasse, Germany) (2011-04-13)
Thomas Trevethan, Bartosz Such, Thilo Glatzel, Shigeki Kawai, Alexander L Shluger, Ernst Meyer, Paula de Mendoza, Antonio M Echavarren
要旨

Modification and functionalization of the atomic-scale structure of insulating surfaces is fundamental to catalysis, self-assembly, and single-molecule technologies. Specially designed syn-5,10,15-tris(4-cyanophenylmethyl)truxene molecules can reshape features on an ionic KBr (001) surface. Atomic force microscopy images demonstrate that both KBr monolayer islands and pits can reshape from rectangular to round structures, a process which is directly facilitated by molecular adsorption. Simulations reveal that the mechanism of the surface reconstruction consists of collective atomic hops of ions on the step edges of the islands and pits, which correlate with molecular motion. The energy barriers for individual processes are reduced by the presence of the adsorbed molecules, which cause surface structural changes. These results show how appropriately designed organic molecules can modify surface morphology on insulating surfaces. Such strongly adsorbed molecules can also serve as anchoring sites for building new nanostructures on inert insulating surfaces.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
臭化カリウム, FT-IR grade, ≥99% trace metals basis
Sigma-Aldrich
臭化カリウム, ACS reagent, ≥99.0%
Sigma-Aldrich
臭化カリウム, ReagentPlus®, ≥99.0%
Sigma-Aldrich
臭化カリウム, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
臭化カリウム, anhydrous, powder, 99.95% trace metals basis
Sigma-Aldrich
臭化カリウム, anhydrous, powder, 99.999% trace metals basis
Sigma-Aldrich
臭化カリウム, BioXtra, ≥99.0%
Sigma-Aldrich
臭化カリウム, JIS special grade, 99.0-100.2%
Sigma-Aldrich
臭化カリウム, SAJ first grade, 99.0-101.0%