Skip to Content
Merck
  • Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

The international journal of biochemistry & cell biology (2015-08-19)
Shi-Jun Dong, Xiang-Hua Lin, Hao Li
ABSTRACT

During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Potassium phosphate dibasic, reagent grade, ≥98.0%
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
Potassium phosphate dibasic solution, 1.0 M
Sigma-Aldrich
Potassium phosphate dibasic, 99.95% trace metals basis
Sigma-Aldrich
Magnesium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Magnesium sulfate solution, BioUltra, for molecular biology
Sigma-Aldrich
Potassium phosphate dibasic, SAJ first grade, ≥98.0%
Sigma-Aldrich
Potassium phosphate dibasic, JIS special grade, ≥99.0%
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Potassium phosphate dibasic, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Magnesium sulfate, puriss. p.a., drying agent, anhydrous, ≥98.0% (KT), powder (very fine)
Sigma-Aldrich
Magnesium sulfate, anhydrous, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Potassium phosphate dibasic, ACS reagent, ≥98%
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥97%
Sigma-Aldrich
Magnesium sulfate, anhydrous, reagent grade, ≥97%
Sigma-Aldrich
Magnesium sulfate, SAJ first grade (dried), ≥99.0%
Sigma-Aldrich
Magnesium sulfate, SAJ first grade (anhydrous), ≥98.0%
Sigma-Aldrich
Potassium phosphate dibasic, anhydrous, for luminescence, for molecular biology, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Potassium phosphate dibasic, meets USP testing specifications
Sigma-Aldrich
Sodium acetate, anhydrous, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium acetate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%