Skip to Content
Merck
  • A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling.

A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling.

European heart journal (2015-06-13)
Juan E Camacho Londoño, Qinghai Tian, Karin Hammer, Laura Schröder, Julia Camacho Londoño, Jan C Reil, Tao He, Martin Oberhofer, Stefanie Mannebach, Ilka Mathar, Stephan E Philipp, Wiebke Tabellion, Frank Schweda, Alexander Dietrich, Lars Kaestner, Ulrich Laufs, Lutz Birnbaumer, Veit Flockerzi, Marc Freichel, Peter Lipp
ABSTRACT

Pathological cardiac hypertrophy is a major predictor for the development of cardiac diseases. It is associated with chronic neurohumoral stimulation and with altered cardiac Ca(2+) signalling in cardiomyocytes. TRPC proteins form agonist-induced cation channels, but their functional role for Ca(2+) homeostasis in cardiomyocytes during fast cytosolic Ca(2+) cycling and neurohumoral stimulation leading to hypertrophy is unknown. In a systematic analysis of multiple knockout mice using fluorescence imaging of electrically paced adult ventricular cardiomyocytes and Mn(2+)-quench microfluorimetry, we identified a background Ca(2+) entry (BGCE) pathway that critically depends on TRPC1/C4 proteins but not others such as TRPC3/C6. Reduction of BGCE in TRPC1/C4-deficient cardiomyocytes lowers diastolic and systolic Ca(2+) concentrations both, under basal conditions and under neurohumoral stimulation without affecting cardiac contractility measured in isolated hearts and in vivo. Neurohumoral-induced cardiac hypertrophy as well as the expression of foetal genes (ANP, BNP) and genes regulated by Ca(2+)-dependent signalling (RCAN1-4, myomaxin) was reduced in TRPC1/C4 knockout (DKO), but not in TRPC1- or TRPC4-single knockout mice. Pressure overload-induced hypertrophy and interstitial fibrosis were both ameliorated in TRPC1/C4-DKO mice, whereas they did not show alterations in other cardiovascular parameters contributing to systemic neurohumoral-induced hypertrophy such as renin secretion and blood pressure. The constitutively active TRPC1/C4-dependent BGCE fine-tunes Ca(2+) cycling in beating adult cardiomyocytes. TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis.

MATERIALS
Product Number
Brand
Product Description

Supelco
Diethyl ether, suitable for HPLC, contains 5 ppm BHT as stabilizer, ≥99%
Sigma-Aldrich
Diethyl ether, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Diethyl ether, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Diethyl ether, JIS special grade, ≥99.5%
Sigma-Aldrich
Diethyl ether, for residue analysis, JIS 5000
Sigma-Aldrich
Diethyl ether, SAJ first grade, ≥99.0%
Sigma-Aldrich
Diethyl ether, ≥99.5%
Sigma-Aldrich
Diethyl ether, JIS 1000, ≥99.5%, for residue analysis