Skip to Content
Merck
  • A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission.

A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission.

Autophagy (2015-06-27)
Jing Zhou, Guobing Li, Yi Zheng, Han-Ming Shen, Xiaoye Hu, Qian-Liang Ming, Cheng Huang, Peng Li, Ning Gao
ABSTRACT

Autophagy inhibition has been widely accepted as a promising therapeutic strategy in cancer, while the lack of effective and specific autophagy inhibitors hinders its application. Here we found that liensinine, a major isoquinoline alkaloid, inhibits late-stage autophagy/mitophagy through blocking autophagosome-lysosome fusion. This effect is likely achieved via inhibiting the recruitment of RAB7A to lysosomes but not to autophagosomes. We further investigated the effects of autophagy inhibition by liensinine on the therapeutic efficacy of chemotherapeutic drugs and found that cotreatment of liensinine markedly decreased the viability and increased apoptosis in breast cancer cells treated with various chemotherapeutic agents. Mechanistically, we found that inhibition of autophagy/mitophagy by liensinine enhanced doxorubicin-mediated apoptosis by triggering mitochondrial fission, which resulted from dephosphorylation and mitochondrial translocation of DNM1L. However, blocking autophagosome/mitophagosome formation by pharmacological or genetic approaches markedly attenuated mitochondrial fission and apoptosis in cells with combinatatorial treatment. Moreover, liensinine was synergized with doxorubicin to inhibit tumor growth in MDA-MB-231 xenograft in vivo. Our findings suggest that liensinine could potentially be further developed as a novel autophagy/mitophagy inhibitor, and a combination of liensinine with classical chemotherapeutic drugs could represent a novel therapeutic strategy for treatment of breast cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sucrose, SAJ first grade
Sigma-Aldrich
Sucrose, JIS special grade
Sigma-Aldrich
Magnesium chloride, CP
Sigma-Aldrich
Sodium pyruvate, SAJ special grade, ≥95.0%
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
cis-Diamineplatinum(II) dichloride, ≥99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)