Skip to Content
Merck
  • Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway.

Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway.

The New phytologist (2015-01-28)
Jonas Van Bockhaven, Lukáš Spíchal, Ondřej Novák, Miroslav Strnad, Takayuki Asano, Shoshi Kikuchi, Monica Höfte, David De Vleesschauwer
ABSTRACT

Although numerous studies have shown the ability of silicon (Si) to mitigate a wide variety of abiotic and biotic stresses, relatively little is known about the underlying mechanism(s). Here, we have investigated the role of hormone defense pathways in Si-induced resistance to the rice brown spot fungus Cochliobolus miyabeanus. To delineate the involvement of multiple hormone pathways, a multidisciplinary approach was pursued, combining exogenous hormone applications, pharmacological inhibitor experiments, time-resolved hormone measurements, and bioassays with hormone-deficient and/or -insensitive mutant lines. Contrary to other types of induced resistance, we found Si-induced brown spot resistance to function independently of the classic immune hormones salicylic acid and jasmonic acid. Our data also rule out a major role of the abscisic acid (ABA) and cytokinin pathways, but suggest that Si mounts resistance to C. miyabeanus by preventing the fungus from hijacking the rice ethylene (ET) machinery. Interestingly, rather than suppressing rice ET signaling per se, Si probably interferes with the production and/or action of fungal ET. Together our findings favor a scenario whereby Si induces brown spot resistance by disarming fungal ET and argue that impairment of pathogen virulence factors is a core resistance mechanism underpinning Si-induced plant immunity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethanol, JIS special grade, ≥99.5%
Sigma-Aldrich
Gibberellic acid, suitable for plant cell culture, BioReagent, ≥90% gibberellin A3 basis (of total gibberellins.)
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
trans-Zeatin, BioReagent, suitable for plant cell culture, ≥97%
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
2,2′-Bipyridyl, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Supelco
Gibberellic acid, PESTANAL®, analytical standard
Sigma-Aldrich
Gibberellic acid, 90% gibberellin A3 basis (HPLC)
Sigma-Aldrich
Gibberellic acid potassium salt, suitable for plant cell culture, BioReagent, ~95%, ≥50% total GA3 basis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Sodium thiosulfate, SAJ first grade, ≥90.0%
Sigma-Aldrich
Ethanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Sodium thiosulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium thiosulfate, purum p.a., anhydrous, ≥98.0% (RT)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Sodium thiosulfate, ReagentPlus®, 99%
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
(+)-Abscisic acid, ≥98% (HPLC)
Sigma-Aldrich
Sodium Thiosulfate Solution, 2 g/dL in deionized water
Sigma-Aldrich
Ethephon, ≥96% (titration)
Sigma-Aldrich
1-Aminocyclopropanecarboxylic acid, ≥98% (TLC), powder