Merck
  • Home
  • Search Results
  • A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs.

A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs.

Journal of veterinary pharmacology and therapeutics (2014-11-08)
X Yang, Y-F Zhou, Y Yu, D-H Zhao, W Shi, B-H Fang, Y-H Liu
ABSTRACT

A multi-compartment physiologically based pharmacokinetic (PBPK) model to describe the disposition of cyadox (CYX) and its metabolite quinoxaline-2-carboxylic acid (QCA) after a single oral administration was developed in rats (200 mg/kg b.w. of CYX). Considering interspecies differences in physiology and physiochemistry, the model efficiency was validated by pharmacokinetic data set in swine. The model included six compartments that were blood, muscle, liver, kidney, adipose, and a combined compartment for the rest of tissues. The model was parameterized using rat plasma and tissue concentration data that were generated from this study. Model simulations were achieved using a commercially available software program (ACSLXL ibero version 3.0.2.1). Results supported the validity of the model with simulated tissue concentrations within the range of the observations. The correlation coefficients of the predicted and experimentally determined values for plasma, liver, kidney, adipose, and muscles in rats were 0.98, 0.98, 0.98, 0.99, and 0.95, respectively. The rat model parameters were then extrapolated to pigs to estimate QCA disposition in tissues and validated by tissue concentration of QCA in swine. The correlation coefficients between the predicted and observed values were over 0.90. This model could provide a foundation for developing more reliable pig models once more data are available.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, ≥99.8%, for chromatography
Sigma-Aldrich
Methanol, ≥99.8%, suitable for absorption spectrum analysis
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 1000, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Supelco
Methanol, analytical standard
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 0.1 % (v/v) formic acid, 5 % (v/v) water, suitable for HPLC
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.035 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material