Skip to Content
Merck
  • Protein tyrosine phosphatase PTPN1 modulates cell growth and associates with poor outcome in human neuroblastoma.

Protein tyrosine phosphatase PTPN1 modulates cell growth and associates with poor outcome in human neuroblastoma.

Diagnostic pathology (2019-12-16)
Caroline E Nunes-Xavier, Olaia Aurtenetxe, Laura Zaldumbide, Ricardo López-Almaraz, Asier Erramuzpe, Jesús M Cortés, José I López, Rafael Pulido
ABSTRACT

Protein tyrosine phosphatases (PTPs) regulate neuronal differentiation and survival, but their expression patterns and functions in human neuroblastoma (NB) are scarcely known. Here, we have investigated the function and expression of the non-receptor PTPN1 on human NB cell lines and human NB tumor samples. NB tumor samples from 44 patients were analysed by immunohistochemistry using specific antibodies against PTPN1, PTPRH, PTPRZ1, and PTEN. PTPN1 knock-down, cell proliferation and tyrosine phosphorylation analyses, and RT-qPCR mRNA expression was assessed on SH-SY5Y, SMS-KCNR, and IMR-32 human NB cell lines. Knock-down of PTPN1 in SH-SY5Y NB cells resulted in increased tyrosine phosphorylation and cell proliferation. Retinoic acid-mediated differentiation of NB cell lines did not affect PTPN1 mRNA expression, as compared with other PTPs. Importantly, PTPN1 displayed high expression on NB tumors in association with metastasis and poor prognosis. Our results identify PTPN1 as a candidate regulator of NB cell growth and a potential NB prognostic biomarker.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Phosphotyrosine Antibody, clone 4G10®, clone 4G10®, Upstate®, from mouse
Sigma-Aldrich
Retinoic acid, ≥98% (HPLC), powder
Sigma-Aldrich
MISSION® esiRNA, targeting human PTPN1
Sigma-Aldrich
MISSION® esiRNA, targeting human GAPDH