Skip to Content
Merck
All Photos(1)

Documents

Safety Information

28-1310

Sigma-Aldrich

Silver nitrate

JIS special grade, ≥99.8%

Synonym(s):

Nitric acid silver(I) salt

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
AgNO3
CAS Number:
Molecular Weight:
169.87
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:

grade

JIS special grade

vapor density

5.8 (vs air)

Assay

≥99.8%

form

solid

availability

available only in Japan

mp

212 °C (dec.) (lit.)

storage temp.

15-25°C

SMILES string

[O-][N+]([O-])=O.[Ag+]

InChI

1S/Ag.NO3/c;2-1(3)4/q+1;-1

InChI key

SQGYOTSLMSWVJD-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Silver nitrate is a versatile reagent that can be prepared by reacting silver with nitric acid. It is used in various fields such as organic synthesis, photography, silver paints, dyes, chemical analysis, gravimetric analysis, and pharmaceutical preparations.

Application

Silver nitrate can be used as a catalyst in the:
  • [3+2]-Cycloaddition of Ͱ-diazocarbonyl compounds with arenediazonium salts to synthesize 2,5-disubstituted tetrazoles.
  • Oxidation of aromatic, aliphatic, and conjugated aldehydes to corresponding carboxylic acids in the presence of H2O2 as an oxidant.
  • Lactamization of methyl Ͱ,Ͱ-disubstituted Ͱ-isocyanoacetates with primary amines to synthesize 3,5,5-trisubstituted imidazolones.

It can also be used as a:
  • Reagent to synthesize bisazetanes from the oxidation of azetidine.

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1 - Met. Corr. 1 - Ox. Sol. 2 - Repr. 1B - Skin Corr. 1A

Storage Class Code

5.1B - Oxidizing hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

PDSCL

Deleterious substance

PRTR

Class I Designated Chemical Substances

FSL

Group 1: Oxidizing solids
Nitrates
Hazardous rank I
1st oxidizing solid

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

28-1310-5-500G-J:
28-1310-2-25G-J:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Liming Wang et al.
ACS nano, 9(6), 6532-6547 (2015-05-23)
To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single
Irina Blinova et al.
Environmental science and pollution research international, 20(5), 3456-3463 (2012-11-13)
Although silver nanoparticles (NPs) are increasingly used in various consumer products and produced in industrial scale, information on harmful effects of nanosilver to environmentally relevant organisms is still scarce. This paper studies the adverse effects of silver NPs to two
Tao Xu et al.
Organic letters, 14(21), 5416-5419 (2012-10-24)
A silver-catalyzed intramolecular oxidative aminofluorination of alkynes has been developed by using NFSI as a fluorinating reagent. This reaction represents an efficient method for the synthesis of various 4-fluoroisoquinolines and 4-fluoropyrrolo[α]isoquinolines.
Benjamin P Colman et al.
PloS one, 8(2), e57189-e57189 (2013-03-08)
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of
Lara Settimio et al.
Environmental pollution (Barking, Essex : 1987), 191, 151-157 (2014-05-20)
The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the (110m)Ag radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service