Passa al contenuto
Merck

miR-24 Inhibition Increases Menin Expression and Decreases Cholangiocarcinoma Proliferation.

The American journal of pathology (2017-01-15)
Laurent Ehrlich, Chad Hall, Julie Venter, David Dostal, Francesca Bernuzzi, Pietro Invernizzi, Fanyin Meng, Jerome P Trzeciakowski, Tianhao Zhou, Holly Standeford, Gianfranco Alpini, Terry C Lairmore, Shannon Glaser
ABSTRACT

Menin (MEN1) is a tumor-suppressor protein in neuroendocrine tissue. Therefore, we tested the novel hypothesis that menin regulates cholangiocarcinoma proliferation. Menin and miR-24 expression levels were measured in the following intrahepatic and extrahepatic cholangiocarcinoma (CCA) cell lines, Mz-ChA-1, TFK-1, SG231, CCLP, HuCCT-1, and HuH-28, as well as the nonmalignant human intrahepatic biliary line, H69. miR-24 miRNA and menin protein levels were manipulated in vitro in Mz-ChA-1 cell lines. Markers of proliferation and angiogenesis (Ki-67, vascular endothelial growth factors A/C, vascular endothelial growth factor receptors 2/3, angiopoietin 1/2, and angiopoietin receptors 1/2) were evaluated. Mz-ChA-1 cells were injected into the flanks of nude mice and treated with miR-24 inhibitor or inhibitor scramble. Menin expression was decreased in advanced CCA specimens, whereas miR-24 expression was increased in CCA. Menin overexpression decreased proliferation, angiogenesis, migration, and invasion. Inhibition of miR-24 increased menin protein expression while decreasing proliferation, angiogenesis, migration, and invasion. miR-24 was shown to negatively regulate menin expression by luciferase assay. Tumor burden and expression of proliferative and angiogenic markers was decreased in the miR-24 inhibited tumor group compared to controls. Interestingly, treated tumors were more fibrotic than the control group. miR-24-dependent expression of menin may be important in the regulation of nonmalignant and CCA proliferation and may be an additional therapeutic tool for managing CCA progression.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
MISSION® esiRNA, targeting human MEN1
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Men1