Passa al contenuto
Merck
  • Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer's disease.

Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer's disease.

Acta neuropathologica communications (2016-05-20)
Dawn H W Lau, Marte Hogseth, Emma C Phillips, Michael J O'Neill, Amy M Pooler, Wendy Noble, Diane P Hanger
ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by neuropathological deposits of amyloid plaques and neurofibrillary tangles comprised of β-amyloid and tau protein, respectively. In AD, tau becomes abnormally phosphorylated and aggregates to form intracellular deposits. However, the mechanisms by which tau exerts neurotoxicity in disease remain unclear. Recent studies have suggested that the presence of tau at synapses may indicate a role in neuronal signalling, which could be disrupted in pathological conditions. The non-receptor-associated tyrosine kinase fyn is located at the dendrite in neurons, where it was recently shown to interact with tau to stabilise receptor complexes at the post-synaptic density. Fyn also co-localises with tau in a proportion of neurons containing tau tangles in AD and fyn is also a tau kinase. Hence, tau-fyn interactions could play a pathogenic role in AD. Here we report the identification of critical proline residues, Pro213, Pro216, and Pro219, located within the fifth and sixth Pro-X-X-Pro motifs in the proline-rich region of tau, that are important for its binding to fyn. These residues in tau are flanked by numerous phosphorylation sites and therefore we investigated the relationship between fyn and the degree of tau phosphorylation in human post-mortem brain tissue. We found no difference in the amount of fyn present in control and AD brain. Notably, however, there was a significant correlation between fyn and phosphorylated tau at specific phospho-epitopes in control, but not in AD brain. Our results suggest that the pathological mechanisms underlying AD, that result in increased tau phosphorylation, may disrupt the physiological relationship between tau phosphorylation and fyn.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anti-FYN antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution