Passa al contenuto
Merck

Mitochondrial metabolites extend lifespan.

Aging cell (2016-01-06)
Robert J Mishur, Maruf Khan, Erin Munkácsy, Lokendra Sharma, Alex Bokov, Haley Beam, Oxana Radetskaya, Megan Borror, Rebecca Lane, Yidong Bai, Shane L Rea
ABSTRACT

Disruption of mitochondrial respiration in the nematode Caenorhabditis elegans can extend lifespan. We previously showed that long-lived respiratory mutants generate elevated amounts of α-ketoacids. These compounds are structurally related to α-ketoglutarate, suggesting they may be biologically relevant. Here, we show that provision of several such metabolites to wild-type worms is sufficient to extend their life. At least one mode of action is through stabilization of hypoxia-inducible factor-1 (HIF-1). We also find that an α-ketoglutarate mimetic, 2,4-pyridinedicarboxylic acid (2,4-PDA), is alone sufficient to increase the lifespan of wild-type worms and this effect is blocked by removal of HIF-1. HIF-1 is constitutively active in isp-1(qm150) Mit mutants, and accordingly, 2,4-PDA does not further increase their lifespan. Incubation of mouse 3T3-L1 fibroblasts with life-prolonging α-ketoacids also results in HIF-1α stabilization. We propose that metabolites that build up following mitochondrial respiratory dysfunction form a novel mode of cell signaling that acts to regulate lifespan.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Terreno Eagle modificato di Dulbecco - alto glucosio, With 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
L-(+)-Lactic acid solution, 30% in H2O (by weight)