Passa al contenuto
Merck

Electron cooling and debye-waller effect in photoexcited bismuth.

Physical review letters (2013-02-07)
B Arnaud, Y Giret
ABSTRACT

By means of first principles calculations, we compute the effective electron-phonon coupling constant G(0) governing the electron cooling in photoexcited bismuth. G(0) strongly increases as a function of electron temperature, which can be traced back to the semimetallic nature of bismuth. We also use a thermodynamical model to compute the time evolution of both electron and lattice temperatures following laser excitation. Thereby, we simulate the time evolution of (1 -1 0), (-2 1 1) and (2 -2 0) Bragg peak intensities measured by Sciaini et al. [Nature (London) 458, 56 (2009)] in femtosecond electron diffraction experiments. The effect of the electron temperature on the Debye-Waller factors through the softening of all optical modes across the whole Brillouin zone turns out to be crucial to reproduce the time evolution of these Bragg peak intensities.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Bismuth, powder, −100 mesh, 99% trace metals basis
Sigma-Aldrich
Bismuth, powder, −100 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Bismuth, granular, ≥99.99% trace metals basis
Sigma-Aldrich
Bismuth, pieces, 1-12 mm, 99.999% trace metals basis
Sigma-Aldrich
Bismuth, shot, 4-30 mesh, 99.9% trace metals basis
Sigma-Aldrich
Bismuth, beads, 1-5 mm, 99.999% trace metals basis