Passa al contenuto
Merck
  • Functional studies of the effect of NO donor on human CLCN1 polymorphism/mutants expressed in Xenopus laevis oocytes.

Functional studies of the effect of NO donor on human CLCN1 polymorphism/mutants expressed in Xenopus laevis oocytes.

Biochemical and biophysical research communications (2007-11-24)
Min-Jon Lin, Ren-Yu Huang, Huichin Pan, Kuang-Ming Hsiao
ABSTRACT

In this study, we investigated the effect of NO donor, diethylamine/nitric oxide (DEA/NO), on the electrophysiological behavior of human skeletal muscle chloride channel (CLCN1). The wild-type and variants of CLCN1, including one polymorphism (P727L) and four mutants (T631I, D644G, G482R, and S471F), were expressed in Xenopus oocytes and the ionic current was measured by two-electrode voltage-clamp method. Our results revealed that there is no significant difference in the current-voltage relationships and half-voltage values of open probability between wild-type and variants of CLCN1 except for G482R. Application of the DEA-NO (0.1mM) significantly increases the channel conductance of wild-type, T631I, D644G, and S471F, but not P727L. This indicates that P727L polymorphism causes loss of sensitivity of CLCN1 to the DEA/NO treatment, which could be due to a conformational change caused by proline substitution. The data suggest that the polymorphic changes may affect the function of CLCN1 in response to the treatment of chemical compounds.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Diethylamine, ≥99.5%
Sigma-Aldrich
Diethylamine, purified by redistillation, 99.5%
Sigma-Aldrich
Diethylamine hydrochloride, ReagentPlus®, 99%
Sigma-Aldrich
Diethylamine, puriss. p.a., ≥99.5% (GC)