Passa al contenuto
Merck
  • Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and alpha-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design.

Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and alpha-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design.

Biochemistry (2003-01-15)
Eric Ortlund, Michael W LaCount, Lukasz Lebioda
ABSTRACT

The X-ray crystal structure of human prostatic acid phosphatase (PAP) in complex with a phosphate ion has been determined at 2.4 A resolution. This structure offers a snapshot of the final intermediate in the catalytic mechanism and does not support the role of Asp 258 as a proton donor in catalysis. A total of eight hydrogen bonds serve to strongly bind the phosphate ion within the active site. Bound PEG molecules from the crystallization matrix have allowed the identification of a channel within the molecule that likely plays a role in molecular recognition and in macromolecular substrate selectivity. Additionally, the structure of PAP in complex with a phosphate derivative, alpha-benzylaminobenzylphosphonic acid, a potent inhibitor (IC(50) = 4 nM), has been determined to 2.9 A resolution. This structure gives new insight into the determinants of binding hydrophobic ligands within the active site and allows us to explain PAP's preference for aromatic substrates.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Phosphatase, Acid from wheat germ, ≥0.4 unit/mg solid
Sigma-Aldrich
Fosfatasi, acida, lyophilized powder, ≥0.5 unit/mg solid
Sigma-Aldrich
Fosfatasi, acida, lyophilized powder, ≥3.0 units/mg solid
Sigma-Aldrich
Phosphatase, Acid from sweet potato, ammonium sulfate suspension, ≥10.0 units/mg protein (modified Warburg-Christian)
Sigma-Aldrich
5′-Nucleotidase human, recombinant, expressed in CHO cells, vial of 6-12 μg