- ORP9 knockdown delays the maturation of junction-related endocytic structures in the testis and leads to impaired sperm release†.
ORP9 knockdown delays the maturation of junction-related endocytic structures in the testis and leads to impaired sperm release†.
The release of late spermatids from the seminiferous epithelium requires the internalization of intercellular junctions by Sertoli cell specific structures called "tubulobulbar complexes" (TBCs). These large, endocytic devices likely evolved from classic clathrin-mediated-endocytosis (CME) machinery, but have several important morphological differences to CME vesicles. Most notable among these differences is that extensive endoplasmic reticulum (ER) membrane contact sites (MCSs) occur with TBCs and not with clathrin-coated pits. One of the well-established functions of ER MCSs is lipid exchange. Previously, we have established that the ORP9 lipid exchange protein is localized to the TBC-ER MCS; however, the function of ORP9 and lipid exchange at the sites is not known. Here we use an in vivo knockdown approach to probe function. The testes of Sprague-Dawley rats were injected with ORP9 targeted siRNA or non-targeted reagents, and the tissues examined by bright field, super-resolution stimulated emission depletion, and electron microscopy. The knockdown of ORP9 was achieved and maintained with daily injections of siRNA for 2-3 day intervals. Compared to controls, sections from ORP9 siRNA-injected testes had longer TBC tubes and fewer fused TBC bulbs. Late spermatids were also abnormally retained in the epithelium of knockdown tissue. These results suggest that ORP9 is necessary for normal TBC bulb vesiculation and fusion, most likely by changing the plasma membrane lipid profile of the TBC. These data also further support the conclusion that TBCs are part of the normal mechanism of sperm release.