Passa al contenuto
Merck
  • Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin.

Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2002-08-15)
Lisa L Gomez, Shuvo Alam, Karen E Smith, Eric Horne, Mark L Dell'Acqua
ABSTRACT

At the postsynaptic membrane of glutamatergic synapses, the cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and calcineurin (CaN) anchoring protein AKAP79/150 is recruited to NMDA and AMPA glutamate receptors by postsynaptic density (PSD)-95 family membrane-associated guanylate kinase (MAGUK) scaffold proteins. These signaling scaffold complexes may function to regulate receptor phosphorylation in synaptic plasticity. Thus, it is important to understand regulation of AKAP79/150 targeting to synapses and recruitment to PSD-MAGUK complexes. AKAP79 is targeted to the plasma membrane by an N-terminal basic domain that binds phosphatidylinositol-4,5-bisphosphate (PI-4,5-P(2)) and is regulated by PKC phosphorylation and calmodulin binding. Here we demonstrate that this same domain also binds F-actin in a calmodulin- and PKC-regulated manner, targets to membrane ruffles enriched in F-actin and PI-4,5-P(2) in COS7 cells, and localizes to dendritic spines with F-actin and PSD-MAGUKs in hippocampal neurons. Inhibition of actin polymerization disrupted AKAP79 targeting of PKA and CaN to ruffles in COS7 cells and endogenous AKAP79/150 dendritic spine localization with PKA, CaN, and PSD-MAGUKs in neurons. AKAP79/150 postsynaptic localization was rapidly regulated by NMDA receptors through CaN activation and F-actin remodeling, further suggesting that AKAP79/150 signaling scaffold targeting depends on actin dynamics. NMDA receptor activation also regulated dendritic spine localization of PKA and CaN and association of the AKAP79/150-PKA complex with PSD-MAGUKs. Because AMPA receptor PKA phosphorylation and synaptic localization are regulated by similar NMDA receptor-CaN signaling pathways linked to hippocampal long-term depression, this regulation of AKAP79/150 postsynaptic targeting might be important for synaptic plasticity.