Skip to Content
Merck
  • Vasoactive intestinal peptide induces CD14+HLA-DR‑/low myeloid-derived suppressor cells in gastric cancer.

Vasoactive intestinal peptide induces CD14+HLA-DR‑/low myeloid-derived suppressor cells in gastric cancer.

Molecular medicine reports (2015-02-20)
Gang Li, Ke Wu, Kaixiong Tao, Xiaoming Lu, Jianhua Ma, Zhengqiang Mao, Hang Li, Liang Shi, Jing Li, Yanfeng Niu, Fan Xiang, Guobin Wang
ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells, which have been revealed to inhibit T-cell responses in tumor-bearing mice. In addition, a number of immune suppressive mechanisms have linked MDSCs and the development of human cancer. However, the role of MDSCs in human gastric cancer tissue remains to be elucidated as specific markers are lacking. Therefore, the aim of the present study was to investigate the frequency and immune suppressive function of MDSCs denoted in the present study as cluster of differentiation 14 (CD14)+human leukocyte antigen (HLA)-DR-/low in gastric cancer patients. In the present study, MDSCs were directly isolated and characterized from the tumor and adjacent normal tissue of gastric cancer patients. Functional analysis of the CD14+HLA-DR-/low MDSCs co-cultured with allogeneic CD4+ T cells were performed and compared with controls. In addition, the interferon-γ (IFN-γ) and interleukin (IL)-2 production was compared in order to investigate the capacity of vasoactive intestinal peptide (VIP) to induce CD14+HLA-DR(-/low) MDSC-mediated CD4+ T-cell dysfunction and whether IL-10 secretion is involved in this mechanism. As a result, the quantity of CD14+HLA-DR(-/low) cells in tumor tissue from gastric cancer patients was significantly higher than that in the adjacent normal tissue. In addition, CD14+HLA-DR-/low MDSCs isolated from tumor tissue were observed to inhibit the CD4+ T-cells' immune responses in comparison with those from the adjacent normal tissue. Furthermore, VIP was able to induce the differentiation of CD14+ mononuclear cells isolated from healthy donor peripheral blood mononuclear cells into activated MDSC cells. Of note, the immunosuppressive effect of VIP-induced CD14+HLA-DR(-/low) MDSCs on CD4+ T cells was mediated by IL-10 secretion, which was demonstrated in the subsequent decrease of IFN-γ and IL-2 production. In conclusion, CD14+HLA-DR(-/low) cells were significantly increased in gastric cancer tissue and were shown to have a critical role in CD4+T-cell immunosuppression. In addition, VIP as a novel cytokine may induce the differentiation of CD14+ mononuclear cells towards CD14+HLA-DR(-/low) MDSCs. An improved understanding of phenotypic heterogeneity and the mechanism of generation of MDSCs in gastric cancer patients is important in the design of effective immunotherapeutic strategies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Vasoactive Intestinal Peptide human, porcine, rat, synthetic, ≥95% (HPLC), powder
Sigma-Aldrich
Vasoactive Intestinal Peptide human, porcine, rat, ≥95% (HPLC), powder
Sigma-Aldrich
PMA, for use in molecular biology applications, ≥99% (HPLC)
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
MISSION® esiRNA, targeting human IL2
Sigma-Aldrich
Interleukin-2 human, IL-2, recombinant, expressed in HEK 293 cells, suitable for cell culture, endotoxin tested
Sigma-Aldrich
Interleukin-2, human, Animal-component free, recombinant, expressed in E. coli, suitable for cell culture
Sigma-Aldrich
Interleukin-2 human, recombinant, expressed in Pichia pastoris, suitable for cell culture
Sigma-Aldrich
Interleukin-2 human, recombinant, expressed in E. coli, ~10000 U/mL
Sigma-Aldrich
Interleukin-2 human, IL-2, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture