- Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2.
Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2.
Evidence in literature has demonstrated that some microRNAs (miRNAs) play a pivotal role in most solid tumor metastasis. Previous studies have showed that miR-100 is downregulated in human prostate cancer tissue compared to normal prostate and also significantly decreased in bone metastatic prostate cancer samples compared with primary prostate cancer. Argonaute 2 (AGO2) is the core effector protein of the miRNA-induced silencing complex and overexpression of AGO2 might enhance tumor metastasis. However, it is unknown whether and how miR-100 and AGO2 regulates metastasis of prostate cancer. Here, we report that miR-100 negatively regulated migration, invasion, epithelial-mesenchymal transition (EMT), colony formation, spheroid formation and expression of the stemness factors c-Myc, Oct4 and Klf4 in PC-3 and DU145 cells. Furthermore, miR-100 expression was negatively correlated with bone metastasis of prostate cancer patients. Notably, luciferase assay showed that AGO2 was a direct target of miR-100. Downregulation of AGO2 repressed migration, invasion, EMT and stemness of prostate cancer cells, and reversed the effects seen with miR-100 downregulation. Downregulation of AGO2 enhanced expression of miR-34a and miR-125b which can suppress migration, invasion, EMT and stemness of cancer cells. Taken together, our findings indicate that loss of miR-100 promotes the metastatic ability of prostate cancer cells at least partially by upregulating AGO2 expression through modulating migration, invasion, EMT and stemness of cancer cells, and suggest that miR-100/AGO2 may play an important role in regulating the metastasis of prostate cancer and is a potential target of prevention and therapy.