Skip to Content
Merck
  • Chemical and sensory effects of storing sauvignon Blanc wine in colored bottles under artificial light.

Chemical and sensory effects of storing sauvignon Blanc wine in colored bottles under artificial light.

Journal of agricultural and food chemistry (2014-07-02)
Alejandro Cáceres-Mella, Daniela Flores-Valdivia, V Felipe Laurie, Remigio López-Solís, Álvaro Peña-Neira
ABSTRACT

The chemical and sensory effects of storing Sauvignon Blanc in colored bottles and exposing them to artificial light were examined. The colors of the bottles chosen were Dead Leaf Green, Antique Green, Amber, and Flint. The light was provided by fluorescent tubes with a regime of 16 h of exposure during 8 months of storage. The results indicated that the wine's chemical composition was affected by the type of bottle used. The Flint bottle presented the lowest concentration of total phenols. Yellow coloration was not dependent on the bottle color, as the wine in darker bottles (Amber, Antique Green, and Dead Leaf Green) had considerably more yellow color development than the wine in clear bottles. With regard to the sensory analyses performed, a trend showing an increase in color intensity and a decrease in overall aromas depending on the bottle color was observed. The wine's aromatic description changed significantly during its storage under artificial light conditions, demonstrating a decrease in vegetal aromas and an increase in citrus and tropical flavors that was dependent on the bottle color.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Supelco
Acetic acid, analytical standard
Millipore
Bifido Selective Supplement B, suitable for microbiology
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
Gallic acid, 97.5-102.5% (titration)
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Caffeic acid, ≥98.0% (HPLC)
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Supelco
Caffeic acid, matrix substance for MALDI-MS, ≥99.0% (HPLC)
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Supelco
Ethyl acetate, analytical standard
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%