Skip to Content
Merck
All Photos(2)

Documents

208523

Sigma-Aldrich

Ruthenium(III) chloride

Ru content 45-55%

Synonym(s):

Ruthenium trichloride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
RuCl3
CAS Number:
Molecular Weight:
207.43
EC Number:
MDL number:
UNSPSC Code:
12161600
PubChem Substance ID:
NACRES:
NA.22

form

solid

reaction suitability

core: ruthenium
reagent type: catalyst
reaction type: Atom Transfer Radical Polymerization (ATRP)

density

3.11 g/mL at 25 °C (lit.)

SMILES string

Cl[Ru](Cl)Cl

InChI

1S/3ClH.Ru/h3*1H;/q;;;+3/p-3

InChI key

YBCAZPLXEGKKFM-UHFFFAOYSA-K

Looking for similar products? Visit Product Comparison Guide

General description

Ruthenium(III) chloride is a chemical compound, that can be used as a mild Lewis acid catalyst for the acetalization of aldehydes, acetalization of alcohols, and conversion of ketoximes to amides. Additionally, it can also be used as a precursor to synthesize Ru nanoparticles.

Application

Ruthenium(III) chloride is used as a catalyst:

  • In the synthesis of β‐amino alcohols by nucleophilic opening of epoxides with anilines.
  • In the acetylation of varies of phenols, alcohols, thiols, and amines under mild conditions.
  • In the synthesis of α‐aminonitriles by mixing aldehydes, amines, and trimethylsilyl cyanides.

Other Notes

insoluble form

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B

Storage Class Code

8B - Non-combustible corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Patrik Västilä et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 12(12), 3218-3225 (2006-01-28)
We studied the role of alkali cations in the [{RuCl2(p-cymene)}2]-pseudo-dipeptide-catalyzed enantioselective transfer hydrogenation of ketones with isopropanol. Lithium salts were shown to increase the enantioselectivity of the reaction when iPrONa or iPrOK was used as the base. Similar transfer-hydrogenation systems
Tetrahedron Letters, 48, 5131-5131 (2007)
Yoshihiko Yamamoto et al.
Organic & biomolecular chemistry, 3(9), 1768-1775 (2005-04-29)
In the presence of catalytic amounts of Cp*RuCl(cod), the partially intramolecular cyclotrimerizations of various C-alkynylglycosides and C-diynylglycosides proceeded at ambient temperature to afford C-arylglycosides.
Jong Seok Lee et al.
The Journal of organic chemistry, 72(15), 5820-5823 (2007-06-26)
Ruthenium-catalyzed site-specific C-H oxyfunctionalization of steroidal ethers with periodate or bromate as terminal oxidants in phosphate buffer provided the acid-sensitive C-16 hydroxy compounds in high yields. Phosphate buffer (pH 7.5) significantly inhibits formation of unwanted side products generated under more
Sébastien Perdriau et al.
ChemSusChem, 5(12), 2427-2434 (2012-10-13)
Cardanol, a constituent of cashew nutshell liquid (CNSL), was subjected to transfer hydrogenation catalyzed by RuCl(3) using isopropanol as a reductant. The side chain of cardanol, which is a mixture of a triene, a diene, and a monoene, was selectively

Articles

We presents an article about a micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization. RAFT (Reversible Addition/Fragmentation Chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Tools for Performing ATRP

Applying ARGET ATRP to the Growth of Polymer Brush Thin Films by Surface-initiated Polymerization

We presents an article about Copper(I)-mediated Living Radical Polymerization in the Presence of Pyridylmethanimine Ligands, and the emergence of living radical polymerization mediated by transition metal catalysts in 1995, which was a seminal piece of work in the field of synthetic polymer chemistry.

Protocols

Sigma-Aldrich presents an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

Sigma-Aldrich presents an article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service