Skip to Content
Merck
  • A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells.

A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells.

European journal of pharmacology (2015-08-13)
Johanna Bertrand, Luc Dannhoffer, Fabrice Antigny, Laura Vachel, Christophe Jayle, Clarisse Vandebrouck, Frédéric Becq, Caroline Norez
ABSTRACT

TRPC6 plays important human physiological functions, notably in artery and arterioles constriction, in regulation of vascular volume and in bronchial muscle constriction. It is implicated in pulmonary hypertension, cardiovascular disease, and focal segmental glomerulosclerosis and seems to play a role in cancer development. Previously, we identified Guanabenz, an α2-adrenergic agonist used for hypertension treatment (Wytensin®), as an activator of calcium-dependent chloride channels (CaCC) in human Cystic Fibrosis (CF) nasal epithelial cells by transiently increasing [Ca2+]i via an influx of extracellular Ca2+. In this study, using assays to measure chloride channel activity, we show that guanabenz is an activator of CaCC in freshly dissociated human bronchial epithelial cells from three CF patients with various genotypes (F508del/F508del, F508del/R1066C, F508del/H1085R). We further characterised the effect of guanabenz and show that it is independent of α-adrenergic receptors, is inhibited by the TRPC family inhibitor SKF-96365 but not by the TRPV family inhibitor ruthenium red. Using western-blotting, Ca2+ measurements and iodide efflux assay, we found that TRPC1 siRNA has no effect on guanabenz induced responses whereas TRPC6 siRNA prevented the guanabenz-dependent Ca2+ influx and the CaCC-dependent activity stimulated by guanabenz. In conclusion, we show that TRPC6 channel is pivotal for the activation of CaCC by guanabenz through a α2-adrenergic-independent pathway in human airway epithelial cells. We suggest propose a functional coupling between TRPC6 and CaCC and guanabenz as a potential TRPC6 activator for exploring TRPC6 and CaCC channel functions and corresponding channelopathies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Oleoyl-2-acetyl-sn-glycerol, ≥97% (TLC), oil
Sigma-Aldrich
Ruthenium Red, Technical grade
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Glycerol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Calix[6]arene, 97%
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%