Skip to Content
Merck
  • Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production.

Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production.

Molecules (Basel, Switzerland) (2015-06-18)
Amélie Slegers, Paul Angers, Étienne Ouellet, Tamara Truchon, Karine Pedneault
ABSTRACT

Developed from crosses between Vitis vinifera and North American Vitis species, interspecific hybrid grape varieties are becoming economically significant in northern areas, where they are now extensively grown for wine production. However, the varietal differences between interspecific hybrids are not well defined, nor are the relationships between hybrid grape and wine composition, which causes significant drawbacks in the development of viticulture and winemaking of northern wines. In an effort to increase our understanding of interspecific hybrids, we have characterized the free volatile compounds profiles of berries (juice and skin) and wines of five red hybrid varieties (Frontenac, Marquette, Maréchal Foch, Sabrevois and St. Croix) grown in Québec (Canada), using GC-MS(TOF)-SPME. In grapes and wines, significantly higher levels of C6 and other fatty acid degradation products (FADP) were found in Frontenac, Maréchal Foch and Marquette. Terpenes were primarily located in the skin, with Marquette showing the highest level for these compounds. Both the level of terpenes and the level of FADP in grape were strongly correlated with their respective levels in wine, as demonstrated by the redundancy analyses. Nonanal, (E,Z)-2,6-nonadienal, β-damascenone, ethyl octanoate and isoamyl acetate showed the highest OAVs in the wines of the studied varieties.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
D-(−)-Fructose, ≥99% (HPLC), BioXtra
Sigma-Aldrich
D-(−)-Fructose, ≥99% (HPLC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
D-(−)-Fructose, ≥99% (HPLC)
Sigma-Aldrich
D-(−)-Fructose, 98.0-102.0% dry basis, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
D-(−)-Fructose, BioUltra, ≥99.0% (HPLC)
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
2-Phenylethanol, ≥99.0% (GC)
Sigma-Aldrich
1-Heptanol, ≥99.5% (GC)
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Decanal, ≥98% (GC), liquid
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
L-(+)-Tartaric acid, BioXtra
Sigma-Aldrich
L-(+)-Tartaric acid, puriss., meets analytical specification of Ph. Eur., NF, 99.7-100.5% (calc. to the dried substance), powder
Sigma-Aldrich
L-(+)-Tartaric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
(−)-Linalool, ≥95.0% (sum of enantiomers, GC)
Sigma-Aldrich
Decanal, natural, ≥97%, FG
Sigma-Aldrich
Hexyl acetate, 99%