Skip to Content
Merck
  • Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.

Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.

Nucleic acids research (2014-04-20)
Andreas Gietl, Phil Holzmeister, Fabian Blombach, Sarah Schulz, Lena Voith von Voithenberg, Don C Lamb, Finn Werner, Philip Tinnefeld, Dina Grohmann
ABSTRACT

During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP-DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly different conditions. Employing single-pair fluorescence resonance energy transfer, we monitored DNA bending by eukaryotic and archaeal TBPs in the absence and presence of TFB in real-time. We observed that the lifetime of the TBP-DNA interaction differs significantly between the archaeal and eukaryotic system. We show that the eukaryotic DNA-TBP interaction is characterized by a linear, stepwise bending mechanism with an intermediate state distinguished by a distinct bending angle. TF(II)B specifically stabilizes the fully bent TBP-promoter DNA complex and we identify this step as a regulatory checkpoint. In contrast, the archaeal TBP-DNA interaction is extremely dynamic and TBP from the archaeal organism Sulfolobus acidocaldarius strictly requires TFB for DNA bending. Thus, we demonstrate that transcription initiation follows diverse pathways on the way to the formation of the pre-initiation complex.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Potassium acetate solution, BioUltra, for molecular biology, 5 M in H2O
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, ≥99%, AR grade
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Potassium acetate, 99.98% trace metals basis
Sigma-Aldrich
Potassium acetate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Potassium acetate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%
Sigma-Aldrich
Potassium acetate, ACS reagent, ≥99.0%
Sigma-Aldrich
Potassium acetate, puriss., meets analytical specification of Ph. Eur., BP, E261, 99-101%
Sigma-Aldrich
Potassium acetate, 98%
Sigma-Aldrich
Potassium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium acetate, meets USP testing specifications