Skip to Content
Merck
  • Monochromatic soft-x-ray-induced reactions of CF2Cl2 adsorbed on Si(111)-7 × 7 studied by continuous-time photon-stimulated desorption spectroscopy near the F(1s) edge.

Monochromatic soft-x-ray-induced reactions of CF2Cl2 adsorbed on Si(111)-7 × 7 studied by continuous-time photon-stimulated desorption spectroscopy near the F(1s) edge.

Journal of physics. Condensed matter : an Institute of Physics journal (2011-10-15)
S-K Wang, W-C Tsai, L-C Chou, Y-C Hsieh, K-H Chen, T-M He, K-S Feng, C-R Wen
ABSTRACT

Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was used to investigate the monochromatic soft x-ray photoreactions of CF(2)Cl(2) adsorbed on Si(111)-7 × 7 near the F(1s) edge (681-704 eV). Sequential F(+) PSD spectra were observed as a function of photon exposure at the CF(2)Cl(2)-covered surface (dose = 2.0 × 10(14) molecules cm(-2), ∼0.75 monolayer). The F(+) PSD and total electron yield (TEY) spectra of solid CF(2)Cl(2) near the F(1s) edge were also measured. Both F(+) PSD and TEY spectra depict three features in the energy range of 687-695 eV, and are assigned to the excitations of F(1s) to (13a(1) + 9b(2))[(C-Cl)(∗)], (7b(1) + 14a(1))[(C-F)∗] antibonding and 5p Rydberg orbitals, respectively. Following the Auger decay process, two holes are created in the C-F bonding orbitals producing the 2h1e final state which results in the F(+) desorption. This PSD mechanism, responsible for the F(+) PSD of solid CF(2)Cl(2), is used to explain the first F(+) PSD spectrum in the sequential F(+) PSD spectra. The variation of spectral shapes in the sequential F(+) PSD spectra shows the consumption of adsorbed CF(2)Cl(2) molecules and the production of surface SiF species as a function of photon exposure. The photolysis cross section of the adsorbed CF(2)Cl(2) molecules by photons with varying energy (681-704 eV) is deduced from the sequential F(+) PSD spectra and found to be ∼6.0 × 10(-18) cm(2).